Quantum Logic: A Brief Introduction

Shengyang Zhong zhongshengyang@163.com

Department of Philosophy, Peking University

December 25th, 2018

Outline

1 A Toy Model

2 Algebraic Semantics

- Logics
- Compatibility
- Implication

3 Relational Semantics

- Propositional Logic
- Modal Logic

4 Background

Outline

1 A Toy Model

Algebraic Semantics

- Logics
- Compatibility
- Implication

3 Relational Semantics

- Propositional Logic
- Modal Logic

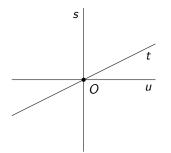
Background

A Toy Model

Fix a point O in the three-dimensional Euclidean space E^3 .

L: the set of all lines in E^3 passing through O

for any $s, t \in L$, $s \not\perp t$, iff s and t are not perpendicular



Orthocomplement

For any $P \subseteq L$, its orthocomplement is defined as follows:

$$\sim P \stackrel{\text{def}}{=} \{ s \in \mathbf{L} \mid s \not\perp t \Rightarrow t \notin P, \text{ for any } t \in \Sigma \}$$
$$= \{ s \in \mathbf{L} \mid s \text{ is perpendicular to all } u \in P \}$$

Example

• For
$$P = \emptyset$$
, $\sim P = \mathbf{L}$.

- For P containing exactly one line s ∈ L, ~P is the plane perpendicular to s.
- For P containing two different lines which determine a plane Q with $P \subseteq Q$, $\sim P$ only contains the line perpendicular to Q.
- For P containing three lines which are not on the same plane, ~P = Ø.

A Toy Model Algebraic Semantics Relational Semantics Background

Bi-Orthogonally Closed Set

$P \subseteq \mathbf{L}$ is bi-orthogonally closed, if $P = \sim \sim P$

Fact In this example, there are four kinds of bi-orthogonally closed sets: ∅ ingletons planes L

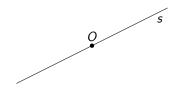
Some Properties of Non-Perpendicularity

- Reflexivity
- Symmetry
- Separation
- Superposition
- Sepresentation

(1) Reflexivity

Reflexivity

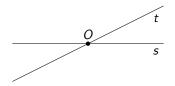
 $s \not\perp s$, for every $s \in \mathbf{L}$.



(2) Symmetry

Symmetry

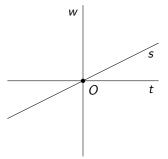
$$s \not\perp t \Rightarrow t \not\perp s$$
, for any $s, t \in \mathsf{L}$



(3) Separation

Separation

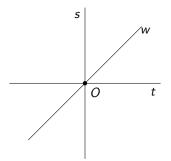
For any $s, t \in L$ satisfying $s \neq t$, there is a $w \in L$ such that $w \not\perp s$ but not $w \not\perp t$.



(4) Superposition

Superposition

For any $s, t \in L$, there is a $w \in L$ such that $w \not\perp s$ and $w \not\perp t$.



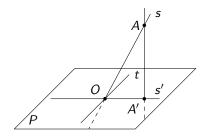
(5) Representation

Definition (Representative)

For any $s \in L$ and $P \subseteq L$, $s' \in L$ is a representative of s in P, if $s' \in P$ and, for each $t \in P$, $s \not\perp t \Leftrightarrow s' \not\perp t$.

Representation

For any $P \subseteq \mathbf{L}$ and $s \in \mathbf{L}$ such that $P = \sim \sim P$ and $s \notin \sim P$, s has a representative in P.



Some Properties of Non-Perpendicularity (Summary)

• Reflexivity $s \not\perp t \Rightarrow t \not\perp s$, for any $s, t \in L$

Symmetry

 $s \not\perp t \Rightarrow t \not\perp s$, for any $s, t \in \mathbf{L}$

Separation

For any $s, t \in L$ satisfying $s \neq t$, there is a $w \in L$ such that $w \not\perp s$ but not $w \not\perp t$

Superposition

For any $s, t \in L$, there is a $w \in L$ such that $w \not\perp s$ and $w \not\perp t$.

Section Existence of Representative

For any $P \subseteq L$ and $s \in L$ such that $P = \sim \sim P$ and $s \notin \sim P$, s has a representative in P

Quantum Kripke Frame

Definition (Kripke Frame)

A Kripke frame \mathfrak{F} is a tuple (Σ, \rightarrow) , where $\Sigma \neq \emptyset$ and $\rightarrow \subseteq \Sigma \times \Sigma$.

Definition (Quantum Kripke Frame)

A quantum Kripke frame is a Kripke frame $\mathfrak{F} = (\Sigma, \rightarrow)$ satisfying:

- **1** Reflexivity: $s \rightarrow s$, for each $s \in \Sigma$.
- **2** Symmetry: $s \not\rightarrow t$ implies $t \not\rightarrow s$, for any $s, t \in \Sigma$.
- Separation: For any s, t ∈ Σ, if s ≠ t, then there is a w ∈ Σ such that w → s and w → t.
- Superposition: For any s, t ∈ Σ, there is a w ∈ Σ such that w → s and w → t.
- Sepresentation:

For any $s \in \Sigma$ and $P \subseteq \Sigma$, if $\sim \sim P = P$ and $s \notin \sim P$, then there is an $s_{\parallel} \in P$ such that $s \not\rightarrow w \Leftrightarrow s_{\parallel} \not\rightarrow w$ holds for each $w \in P$.

Orthocomplement and Bi-orthogonally Closed Subset

Let $\mathfrak{F}=(\Sigma, \rightarrow)$ be a Kripke frame.

Definition (Orthocomplement)

For a $P \subseteq \Sigma$, the orthocomplement of P is defined as follows:

 $\sim P \stackrel{\mathsf{def}}{=} \{ s \in \Sigma \mid s \to t \Rightarrow t \notin P \text{ holds for each } t \in \Sigma \}$

Definition (Bi-orthogonally Closed Subset)

 $P \subseteq \Sigma$ is bi-orthogonally closed, if $P = \sim \sim P$.

 $\mathcal{L}_{\mathfrak{F}}$: the set of all bi-orthogonally closed subsets of \mathfrak{F} .

Simple Facts about Orthocomplements

- Let $\mathfrak{F}=(\Sigma, \rightarrow)$ be a Kripke frame satisfying Reflexivity and Symmetry.
 - $\ \, \bullet = \Sigma \ \, \mathsf{and} \ \, \sim \Sigma = \emptyset.$
 - $P \subseteq \sim \sim P, \text{ for each } P \subseteq \Sigma.$
 - $\ \, { o } \ \, P \subseteq Q \ \, { implies that } \sim Q \subseteq \sim P, \ \, { for any } \ \, P, Q \subseteq \Sigma.$
 - $\sim P \in \mathcal{L}_{\mathfrak{F}}$, for each $P \subseteq \Sigma$.
 - $\ \, { o } \ \, P \cap Q \in { \mathcal L}_{\mathfrak F}, \ \, \text{for any} \ \, P, Q \in { \mathcal L}_{\mathfrak F}.$

Why Is This Called Quantum? A Lite Math Explanation

- (\mathbf{L}, \neq) is a quantum Kripke frame and is abstracted from E^3 .
- According to analytic geometry, E^3 is the same as \mathbb{R}^3 .
- Generalizing the above to arbitrary finite dimensions, we get Rⁿ.
 The math theory of them is linear algebra on the real numbers.
- Generalizing the above to C, we get Cⁿ.
 The math theory of them is linear algebra on the complex numbers.
 This is the math of quantum computation and quantum information.
- \bullet Generalizing the above to infinite dimensions, we get Hilbert spaces over $\mathbb{C}.$

The math theory of them is functional analysis on the complex numbers.

This is the math of quantum physics.

 $\bullet\,$ From each Hilbert space over $\mathbb{C},$ we can extract a quantum Kripke frame.

Why Is This Called Quantum? A Lite Phys. Explanation

- A quantum system is described by a quantum Kripke frame $\mathfrak{F}=(\Sigma, \rightarrow).$
- A (pure) state of the system is described by an element in Σ .
- For $s, t \in \Sigma$, $s \to t$ means that s and t can not be perfectly discriminated.
- A property of the system is described by a bi-orthogonally subset of $\boldsymbol{\Sigma}.$

Why Do Bi-orthogonally Closed Sets Describe Properties?

Let $\mathfrak{F}=(\Sigma, \rightarrow)$ be a Kripke frame satisfying Reflexivity and Symmetry.

Definition (Opposite Pair and Maximal Opposite Pair)

An opposite pair in \mathfrak{F} is a tuple (P, Q) where $P \subseteq \Sigma$, $Q \subseteq \Sigma$ and $s \not\rightarrow t$ for any $s \in P$ and $t \in Q$. An opposite pair (P, Q) in \mathfrak{F} is maximal, if, for each opposite pair (P', Q') in $\mathfrak{F}, P \subseteq P'$ and $Q \subseteq Q'$ imply that P = P' and Q = Q'.

Proposition

For each maximal opposite pair (P, Q) in \mathfrak{F} , both P and Q are bi-orthogonally closed.

Proposition

For each $P \subseteq \Sigma$, the following are equivalent:

- (a) *P* is bi-orthogonally closed;
- (b) $(P, \sim P)$ is a maximal opposite pair in \mathfrak{F} .

Quantum Test and Maximal Opposite Pair

Consider a quantum system described by a quantum Kripke frame $\mathfrak{F}=(\Sigma,\rightarrow).$

Tests of this quantum system are described by maximal opposite pairs of $\mathfrak{F}.$

Assume that it is in the state $s \in \Sigma$, and we do a test described by (P_0, P_1) :

- **()** if $s \in P_0$, then the outcome will be 0 and the state after the test is s;
- **2** if $s \in P_1$, then the outcome will be 1 and the state after the test is *s*;
- if $s \notin P_0 \cup P_1$, then there are two possibilities:
 - the outcome is 0, and the state after the test is the representative of s in P₀;
 - **e** the outcome is 1, and the state after the test is the representative of s in P_1 .

Formal Languages

Let PV be a set of propositional variables.

Definition (Propositional Formula)

The notion of a (propositional) formula is defined as follows:

$$\phi ::= p \mid \neg \phi \mid \phi \land \phi, \quad p \in PV$$

Form: the set of (propositional) formulas

Definition (Modal Formula)

The notion of a modal formula is defined as follows:

$$\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid \Box \phi, \quad p \in PV$$

Form_M: the set of modal formulas

Outline

1 A Toy Model

2 Algebraic Semantics

- Logics
- Compatibility
- Implication

3 Relational Semantics

- Propositional Logic
- Modal Logic

Background

Partially Ordered Set

Definition (Partially Ordered Set)

A partially ordered set is a tuple 𝔅 = (P, ≤), where P ≠ ∅ and ≤ ⊆ P × P such that, for any a, b, c ∈ P,
a ≤ a;
a ≤ b and b ≤ c imply that a ≤ c;
a < b and b < a imply that a = b.

- For each set A, $(\wp(A), \subseteq)$ is a partially ordered set.
- e For each quantum Kripke frame 𝔅, (𝔅(𝔅), ⊆) is a partially ordered set.

Lattice

Definition (Lattice)

A lattice is a partially order set $\mathfrak{L} = (L, \leq)$ where any pair of elements $a, b \in L$ has an infimum (called meet) $a \wedge b$ and a supremum (called join) $a \vee b$.

- For each set A, (℘(A), ⊆) is a lattice with ∩ as the meet and ∪ as the join.
- Sor each quantum Kripke frame S, (L_S, ⊆) is a lattice with P ∩ Q as the meet and P ⊔ Q = ~(~P ∩ ~Q) as the join for any P, Q ∈ L_S.

Bounded Lattice

Definition (Bounded Lattice)

A bounded lattice is a tuple $\mathfrak{L} = (L, \leq, O, I)$ where (L, \leq) is a lattice and $O, I \in L$ satisfy that $O \leq a \leq I$ holds for each $a \in L$.

- For each set A, $(\wp(A), \subseteq, \emptyset, \Sigma)$ is a bounded lattice.
- e For each quantum Kripke frame 𝔅, (ℒ(𝔅), ⊆, ∅, Σ) is a bounded lattice.

(Lattice-theoretic) Orthocomplement

Definition (Orthocomplementation)

An orthocomplementation on a bounded lattice $\mathfrak{L} = (L, \leq, O, I)$ is a function $(\cdot)' : L \to L$ such that, for any $a, b \in L$,

•
$$a \wedge a' = O$$
 and $a \vee a' = I$;

3)
$$a \leq b$$
 implies that $b' \leq a'$;

For each $a \in L$, a' is called the (lattice-theoretic) orthocomplement of a. A tuple $\mathfrak{L} = (L, \leq, (\cdot)', O, I)$ is an ortho-lattice, if (L, \leq, O, I) is a bounded lattice and $(\cdot)'$ is an orthocomplementation on (L, \leq, O, I) .

- For each set A, set-theoretic complement A \ · is an orthocomplementation on the bounded lattice (℘(A), ⊆, ∅, Σ).
- Solution Provide a strain and the strain and t

De Morgen's Law

Proposition (De Morgen's Law)

Let $\mathfrak{L} = (L, \leq, (\cdot)', O, I)$ be an ortho-lattice. For any $a, b \in L$,

$$(a \wedge b)' = a' \vee b'$$

 $(a \vee b)' = a' \wedge b'$

Proof.

Since $a \land b \leq a$, $a' \leq (a \land b)'$. Since $a \land b \leq b$, $b' \leq (a \land b)'$. Therefore, $a' \lor b' \leq (a \land b)'$.

Since
$$a' \leq a' \lor b'$$
, $(a' \lor b')' \leq a'' = a$.
Since $b' \leq a' \lor b'$, $(a' \lor b')' \leq b'' = b$.
Therefore, $(a' \lor b')' \leq a \land b$.
It follows that $(a \land b)' \leq (a' \lor b')'' = a' \lor b'$

Distributivity

Definition (Distributive Lattice)

A lattice $\mathfrak{L} = (L, \leq)$ is a distributive lattice, if for each $a, b, c \in L$,

$$a \wedge (b \lor c) = (a \land b) \lor (a \land c)$$

 $a \lor (b \land c) = (a \lor b) \land (a \lor c)$

In fact, in a lattice, each one of them implies the other.

Fact

For each set A, $(\wp(A), \subseteq)$ is a distributive lattice.

Definition (Boolean Algebra)

A Boolean algebra is a distributive ortho-lattice.

Fact

For each set A, $(\wp(A), \subseteq, A \setminus (\cdot), \emptyset, A)$ is a Boolean algebra.

Non-distributivity

Proposition

There is a quantum Kripke frame $\mathfrak{F}=(\Sigma,\rightarrow)$ such that $(\mathcal{L}_\mathfrak{F},\subseteq,\sim(\cdot),\emptyset,\Sigma)$ is not a distributive lattice, and thus not a Boolean algebra.

Proof.

Consider the following Kripke frame $\mathfrak{F} = (\Sigma, \rightarrow)$:

$$1 - 2$$
$$| \\ 3 - 4$$

 $\begin{array}{l} \mathcal{L}_{\mathfrak{F}} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \Sigma\} \\ (\{1\} \cap \{2\}) \sqcup \{3\} = \emptyset \sqcup \{3\} = \{3\} \neq \Sigma = \Sigma \cap \Sigma = (\{1\} \sqcup \{3\}) \cap (\{2\} \sqcup \{3\}) \\ (\{1\} \sqcup \{2\}) \cap \{3\} = \Sigma \cap \{3\} = \{3\} \neq \emptyset = \emptyset \sqcup \emptyset = (\{1\} \cap \{3\}) \sqcup (\{2\} \cap \{3\}) \\ \end{array}$

Orthomodularity

Theorem

For each quantum Kripke frame $\mathfrak{F}=(\Sigma, \rightarrow),$ the following holds:

$$\mathsf{P} \cap ({\sim}\mathsf{P} \sqcup (\mathsf{P} \cap \mathsf{Q})) \subseteq \mathsf{Q}$$
, for any $\mathsf{P}, \mathsf{Q} \in \mathcal{L}_{\mathfrak{F}}$

Proof.

Assume that $s \in P$ and $s \in \sim P \sqcup (P \cap Q)$. Let t be arbitrary such that $s \rightarrow t$. By Symmetry $t \rightarrow s$. Since $s \in P$, $t \notin \sim P$. By Representation there is a $t' \in P$ such that, for each $u \in P$, $t \to \mu \Leftrightarrow t' \to \mu$ Since $s \in P$ and $t \to s$, $t' \to s$. By Symmetry $s \to t'$. Since $s \in \sim P \sqcup (P \cap Q)$, $t' \notin P \cap \sim (P \cap Q)$. Since $t' \in P$, $t' \notin \sim (P \cap Q)$. Hence there is a $w \in P \cap Q$ such that $t' \to w$. Since $w \in P$ and $t' \to w$. $t \to w$. Since $w \in Q$, $t \notin \sim Q$. Therefore, $s \in \sim \sim Q = Q$.

Orthomodular Lattice

Definition (Orthomodular Lattice)

An orthomodular lattice is an ortho-lattice $\mathfrak{L} = (L, \leq, (\cdot)', O, I)$ satisfying the following orthomodular law, i.e.

 $a \wedge (a' \vee (a \wedge b)) \leq b$, for any $a, b \in L$

Lemma [Mittelstaedt, 1978]

In an ortho-lattice $\mathfrak{L} = (L, \leq, (\cdot)', O, I)$, the following are equivalent:

(i)
$$a \land (a' \lor (a \land b)) \le b$$
, for any $a, b \in L$;

(ii)
$$a \leq b$$
 implies $a = b \land (a \lor b')$, for any $a, b \in L$;

(iii)
$$a \leq b$$
 implies $b = a \lor (a' \land b)$, for any $a, b \in L$;

(iv)
$$a \leq b$$
 and $c \leq b'$ imply $b \wedge (a \vee c) = (b \wedge a) \vee (b \wedge c)$, for any $a, b, c \in L$.

Examples of Orthomodular Lattices

- Every Boolean algebra is an orthomodular lattice.
- e For each quantum Kripke frame $\mathfrak{F} = (\Sigma, →)$, (L_𝔅, ⊆, ~(·), ∅, Σ) is an orthomodular lattice.

A Famous Open Problem

Open Problem

Can every orthomodular lattice be embedded into a complete orthomodular lattice?

Outline

1 A Toy Model

- 2 Algebraic Semantics
 - Logics
 - Compatibility
 - Implication

3 Relational Semantics

- Propositional Logic
- Modal Logic

Boolean Algebras and Classical Logic

Definition (Assignment on a Boolean Algebra)

An assignment σ on a Boolean algebra $\mathfrak{L} = (L, \leq, (\cdot)', O, I)$ is a function from *Form* to *L* such that

$$\ \circ (\neg \varphi) = (\sigma(\varphi))'.$$

Definition (Semantic Consequence w.r.t BA)

For each $\Gamma \subseteq Form$ and $\phi \in Form$, $\Gamma \Vdash_{BA} \phi$, if, for each Boolean algebra \mathfrak{L} , assignment σ on \mathfrak{L} and each $a \in L$, $a \leq \sigma(\psi)$ for all $\psi \in \Gamma$ implies that $a \leq \sigma(\phi)$.

Theorem

For each $\Gamma \subseteq Form$ and $\phi \in Form$,

$$\mathsf{\Gamma} \vdash_{\mathsf{PC}} \varphi \Leftrightarrow \mathsf{\Gamma} \Vdash_{\mathsf{BA}} \varphi$$

Ortho-lattices and Semantic Consequence

Definition (Assignment on an Ortho-lattice)

An assignment σ on an ortho-lattice $\mathfrak{L} = (L, \leq, (\cdot)', O, I)$ is a function from *Form* to *L* such that

$$\ \, \bullet \ \, \circ (\varphi \wedge \psi) = \sigma(\varphi) \wedge \sigma(\psi);$$

$$\ \circ (\neg \varphi) = (\sigma(\varphi))'.$$

Definition (Semantic Consequence w.r.t a Class of Ortho-Lattice)

Let **C** be a subclass of the class of ortho-lattices. For each $\Gamma \subseteq Form$ and $\phi \in Form$, $\Gamma \Vdash_{\mathbf{C}} \phi$, if, for each ortho-lattice $\mathfrak{L} \in \mathbf{C}$, assignment σ on \mathfrak{L} and each $a \in L$, $a \leq \sigma(\psi)$ for all $\psi \in \Gamma$ implies that $a \leq \sigma(\phi)$.

Definition

OL: the class of all ortho-lattices OML: the class of all orthomodular lattices

An Axiomatization of Ortho-Logic

The first axiomatization of ortho-logic is given in [Goldblatt, 1974], and the following one is from [Chiara and Giuntini, 2002].

Definition (Ortho-Logic)		
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\fbox{\Gamma \cup \{\varphi \land \psi\} \vdash \varphi}$	$\boxed{\Gamma \cup \{\varphi \land \psi\} \vdash \psi}$
${}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}$	${}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}$	$\fbox{\Gamma \cup \{\varphi \land \neg \varphi\} \vdash \psi}$
$\begin{tabular}{c c c c c c } \hline $\Gamma \vdash \varphi$ & $\Delta \cup \{\varphi\} \vdash \psi$ \\ \hline $\Gamma \cup \Delta \vdash \psi$ \\ \hline \end{tabular}$	$\frac{\Gamma \cup \{\varphi, \psi\} \vdash \theta}{\Gamma \cup \{\varphi \land \psi\} \vdash \theta}$	$\frac{\ \ \Gamma \vdash \varphi \ \Gamma \vdash \psi}{\ \ \Gamma \vdash \varphi \land \psi}$
$\frac{\{\varphi\} \vdash \psi \qquad \{\varphi\} \vdash \neg \psi}{\vdash \neg \varphi}$	$\frac{\{\varphi\} \vdash \psi}{\{\neg \psi\} \vdash \neg \varphi}$	

Derivation and Syntactic Consequence

Definition (Sequent)

 $\Gamma \vdash \varphi$, where $\Gamma \subseteq Form$ and $\varphi \in Form$, is called a sequent.

Definition (Derivation)

A derivation is a *finite* sequence of sequents, each of which satisfies one of the following:

- it is the conclusion of an improper rule;
- it is the conclusion of a proper rule whose premises are previous elements in this sequence.

Definition (Syntactic Consequence)

 $\varphi \in Form$ is a syntactic consequence of $\Gamma \subseteq Form$ in ortho-logic $(\Gamma \vdash_{OL} \varphi)$, if there is a derivation such that $\Gamma \vdash \varphi$ is the last element.

An Axiomatization of Orthomodular Logic

Definition (Orthomodular Logic)

Orthomodular logic is that of ortho-logic plus the following improper rule:

$$\varphi \wedge \neg (\varphi \wedge \neg (\varphi \wedge \psi)) \vdash \psi$$

The notions of derivation and syntactic consequence $(\Gamma \vdash_{OML} \phi)$ can be defined similar to those for ortho-logic.

Characterization Theorems

Theorem

For each $\Gamma \subseteq Form$ and $\phi \in Form$,

 $\Gamma \vdash_{\mathit{OL}} \varphi \ \Leftrightarrow \ \Gamma \Vdash_{\mathit{OL}} \varphi$

Theorem

For each $\Gamma \subseteq Form$ and $\phi \in Form$,

 $\mathsf{\Gamma}\vdash_{\mathit{OML}}\varphi \ \Leftrightarrow \ \mathsf{\Gamma}\Vdash_{\mathsf{OML}}\varphi$

Outline

1 A Toy Model

2 Algebraic Semantics

- Logics
- Compatibility
- Implication

3 Relational Semantics

- Propositional Logic
- Modal Logic

Compatible Elements

Definition (Compatible Elements)

In an ortho-lattice $\mathfrak{L} = (L, \leq, (\cdot)'O, I)$, $a, b \in L$ is compatible, denoted by $a \sim b$, if

$$a = (a \wedge b) \lor (a \wedge b')$$

Theorem [Mittelstaedt, 1978]

In an ortho-lattice \mathfrak{L} , the following are equivalent:

- (i) the compatibility relation \sim is symmetric;
- (ii) orthomodularity holds, i.e. \mathfrak{L} is an orthomodular lattice.

Properties of Compatible Elements

Theorem [Mittelstaedt, 1978]

In an orthomodular lattice $\mathfrak{L} = (L, \leq, (\cdot)')$,

- $a \leq b$ implies that $a \sim b$;
- 3 $b \sim a$ and $c \sim a$ imply that $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$;
- **(3)** the relation \sim is closed under $(\cdot)^{\prime}$, \vee and \wedge , i.e.
 - $a \sim b$ implies that $a \sim b'$;
 - 2 $a \sim b$ and $a \sim c$ imply that $a \sim (b \lor c)$;
 - 3 $a \sim b$ and $a \sim c$ imply that $a \sim (b \wedge c)$.

Corollary [Mittelstaedt, 1978]

 $\begin{array}{l} \mathsf{K1} \sim \mathsf{is symmetric;} \\ \mathsf{K2} \leq \subseteq \sim; \\ \mathsf{K3} \ \ \mathsf{If} \ A \subseteq L \ \mathsf{satisfies} \ A \times A \subseteq \sim, \ A \ \mathsf{generates} \ \mathsf{a} \ \mathsf{Boolean} \ \mathsf{sub-lattice} \ \mathsf{of} \ \mathfrak{L}; \\ \mathsf{K4} \ \ \mathsf{If} \ A \subseteq L \ \mathsf{forms} \ \mathsf{a} \ \mathsf{Boolean} \ \mathsf{sub-lattice} \ \mathsf{of} \ \mathfrak{L}, \ A \times A \subseteq \sim. \end{array}$

Characterization of Compatibility

Theorem [Mittelstaedt, 1978]

In an orthomodular lattice, every binary relation satisfying (K1) - (K4) is equal to \sim .

Theorem [Mittelstaedt, 1978]

In an ortho-lattice £, the following are equivalent:

- Orthomodularity holds, i.e. \mathfrak{L} is an orthomodular lattice; (i)
- (ii) there exists a binary relation on \mathfrak{L} satisfying (K1) (K4).

Indicator of Compatibility

Theorem [Mittelstaedt, 1978]

In an orthomodular lattice, for any two elements a and b,

$$a \sim b \Leftrightarrow k(a, b) = I$$

where

$$k(a,b) = (a \land b) \lor (a \land b') \lor (a' \land b) \lor (a' \land b')$$

Direct Product and Reducibility

Definition (Direct Product of Ortho-Lattice)

Given two ortho-lattices $\mathfrak{L}_1 = (L_1, \leq_1, (\cdot)^{\perp_1}, O_1, I_1)$ and $\mathfrak{L}_2 = (L_2, \leq_2, (\cdot)^{\perp_2}, O_2, I_2)$, the direct product of \mathfrak{L}_1 and \mathfrak{L}_2 is a tuple $(L, \leq, (\cdot)')$ such that:

$$\bullet L = L_1 \times L_2;$$

- **②** for any $(a_1, a_2), (b_1, b_2) \in L$, $(a_1, a_2) \leq (b_1, b_2)$, if $a_1 \leq_1 b_1$ and $a_2 \leq_2 b_2$;
- **3** for any $(a_1, a_2) \in L$, $(a_1, a_2)' = (a_1^{\perp_1}, a_2^{\perp_2})$.

Definition (Reducibility)

An ortho-lattice is reducible, if it is isomorphic to the direct product of two non-trivial ortho-lattices. Otherwise, it is irreducible.

Compatibility and Reducibility

Theorem [Piron, 1976]

In an orthomodular lattice $\mathfrak{L} = (L, \leq, (\cdot)', O, I)$, if there is a $b \in L$ which is compatible with every element of L, then \mathfrak{L} is reducible. In particular, it is isomorphic to the direct product $[O, b] \times [O, b']$ via the map $\theta :: a \mapsto (a \land b, a \land b')$.

Corollary

Every Boolean algebra with more than 2 elements is reducible.

Outline

1 A Toy Model

2 Algebraic Semantics

- Logics
- Compatibility
- Implication

3 Relational Semantics

- Propositional Logic
- Modal Logic

The Implication Problem

A Requirement for Implication

$$a
ightarrow b = I \quad \Leftrightarrow \quad a \leq b$$

Material Implication Fails

$$1 - 2$$

 $| - 1$
 $3 - 4$

$$\sim \{1\} \sqcup \{2\} = \{4\} \sqcup \{2\} = \{1, 2, 3, 4\} \text{ but } \{1\} \not\subseteq \{2\}.$$

Theorem

In an ortho-lattice \mathfrak{L} , if, for any two elements $a, b \in L$, there is an $a \to b \in L$ such that

$$c \land a \leq b \Leftrightarrow c \leq a \rightarrow b$$
, for each $c \in L$,

then \mathfrak{L} is distributive and thus is a Boolean algebra.

The Search of an Implication

Theorem [Kalmbach, 1983]

In an orthomodular lattice freely generated by two elements there are only five polynomial binary operations \rightarrow satisfying the condition $a \leq b$ if and only if $a \rightarrow b = I$:

a
$$\rightarrow_1 b = a' \lor (a \land b);$$
a $\rightarrow_2 b = b \lor (a' \land b');$
a $\rightarrow_3 b = (a' \land b) \lor (a \land b) \lor (a' \land b');$
a $\rightarrow_4 b = (a' \land b) \lor (a \land b) \lor ((a' \lor b) \land b');$
a $\rightarrow_5 b = (a' \land b) \lor (a' \land b') \lor (a \land (a' \lor b)).$

Proposition [Kotas, 1967]

In an orthomodular lattice, i = 1, if and only if \rightarrow_i has the following property:

 $a \sim b$ implies that $c \wedge a \leq b \Leftrightarrow c \leq a \rightarrow_i b$ for each $c \in L$.

Sasaki Hook

Definition (Sasaki Hook)

In an ortho-lattice, the Sasaki hook of a and b is the element:

$$a \stackrel{S}{\rightarrow} b \stackrel{\mathsf{def}}{=} a' \lor (a \land b)$$

Theorem [Mittelstaedt, 1978]

In an ortho-lattice \mathfrak{L} , the following are equivalent:

- (i) \mathfrak{L} satisfies orthomodularity, i.e. is an orthomodular lattice;
- (ii) for any *a* and *b*, there is an element $a \stackrel{S}{\rightarrow} b$ satisfying:

$$a \wedge (a \xrightarrow{S} b) \le b;$$

$$a \wedge c \le b \Rightarrow a' \vee (a \wedge c) \le a \xrightarrow{S} b$$

When one (and thus both) of these conditions holds, S

$$a \stackrel{s}{\rightarrow} b = a' \lor (a \land b)$$
 for any a and b .

Properties of the Sasaki Hook

Theorem [Mittelstaedt, 1978]

The following hold in all orthomodular lattices:

•
$$a \lor (a \xrightarrow{S} b) = I$$

• $((a \xrightarrow{S} b) \xrightarrow{S} a) \xrightarrow{S} a = I$ (Peirce's Law)

Fact

The following does **NOT** hold in general in orthomodular lattices:

•
$$a \stackrel{S}{\rightarrow} (b \stackrel{S}{\rightarrow} a) = I$$

•
$$(a \xrightarrow{S} b \xrightarrow{S} c) \xrightarrow{S} (a \xrightarrow{S} b) \xrightarrow{S} a \xrightarrow{S} c = I$$

A Counterfactual Reading of the Sasaki Hook

Consider a quantum Kripke frame $\mathfrak{F} = (\Sigma, \rightarrow)$, $s \in \Sigma$ and $P, Q \in \mathcal{L}_{\mathfrak{F}}$.

Fact The following are equivalent: (i) $s \in P \xrightarrow{S} Q$; (ii) for each representative s' of s in P, s' $\in Q$.

Define a function $F : \mathcal{L}_{\mathfrak{F}} \times \Sigma \to \Sigma :: (P, s) \mapsto \{s' \in \Sigma \mid s' \text{ is a representative of } s \text{ in } P\}$

$$s \subseteq P \stackrel{S}{\rightarrow} Q \iff F(P,s) \subseteq W$$

The system in a state has property $P \xrightarrow{S} Q$, if the system has property Q after a test of the property P yielding a positive result.

Outline

1 A Toy Model

2 Algebraic Semantics

- Logics
- Compatibility
- Implication

3 Relational Semantics

- Propositional Logic
- Modal Logic

Background

Outline

1 A Toy Model

2 Algebraic Semantics

- Logics
- Compatibility
- Implication

Relational Semantics Propositional Logic

Modal Logic

Ortho-frame and Ortho-model

Definition (Ortho-frame)

An ortho-frame is a Kripke frame $\mathfrak{F}=(\Sigma,\to)$ satisfying Reflexivity and Symmetry.

Definition (Ortho-model)

An ortho-model is a tuple $\mathfrak{M} = (\mathfrak{F}, V)$ where \mathfrak{F} is an ortho-frame and $V : PV \to \mathcal{L}_{\mathfrak{F}}$ is a function.

Truth and Semantic Consequence

Definition (Truth)

$$\begin{split} \varphi \in & \textit{Form being true at a point } s \in \Sigma \textit{ in an ortho-model} \\ \mathfrak{M} = ((\Sigma, \bot), V), \ \mathfrak{M}, s \Vdash \varphi, \textit{ is defined recursively as follows:} \\ \mathfrak{M}, s \Vdash p \iff s \in V(p) \\ \mathfrak{M}, s \Vdash \varphi \land \psi \iff \mathfrak{M}, s \Vdash \varphi \textit{ and } \mathfrak{M}, s \Vdash \psi \\ \mathfrak{M}, s \Vdash \neg \varphi \iff s \rightarrow t \textit{ implies that } \mathfrak{M}, t \not\models \varphi, \textit{ for all } t \in \Sigma \end{split}$$

Definition (Semantic Consequence)

 $\varphi \in Form$ is a semantic consequence of $\Gamma \subseteq Form$, denoted as $\Gamma \Vdash_{OF} \varphi$, if $\mathfrak{M}, s \Vdash \Gamma$ implies that $\mathfrak{M}, s \Vdash \varphi$, for every ortho-model \mathfrak{M} and s in the underlying set of \mathfrak{M} .

Characterization Theorem

Theorem

For each $\Gamma \subseteq Form$ and $\phi \in Form$,

$${\sf \Gamma}\vdash_{\mathit{OL}}\varphi\ \Leftrightarrow\ {\sf \Gamma}\Vdash_{{\sf OF}}\varphi$$

Open Problem [Goldblatt, 1974]

What special kind of ortho-frames does orthomodular logic axiomatize?

Translation into the Modal Logic **KTB**

A translation map $T : Form \rightarrow Form_M$ can be defined as follows:

$$egin{aligned} T(p) &= & \Box \neg \Box \neg p \ T(arphi \wedge \psi) &= & T(arphi) \wedge T(\psi) \ T(\neg arphi) &= & \Box \neg T(arphi) \end{aligned}$$

Theorem [Goldblatt, 1974]

For any $\Gamma \subseteq Form$ and $\varphi \in Form$,

 $\Gamma \vdash_{OL} \varphi \iff \{T(\psi) \mid \psi \in \Gamma\} \vdash_{\mathsf{KTB}} T(\varphi).$

Intuitionistic Logic

Please note that the minimal set of primitive connectives in intuitionistic logic includes $\bot,$ $\land,$ $\lor,$ $\rightarrow.$

Definition (Int-frame)

An int-frame is a Kripke frame $\mathfrak{F}=(\Sigma,\to)$ satisfying Reflexivity and Transitivity.

Definition (Int-model)

An int-model is a tuple $\mathfrak{M} = (\mathfrak{F}, V)$ where $\mathfrak{F} = (\Sigma, \rightarrow)$ is an int-frame and V is a function from PV to the set of all persistent/upward closed subsets of \mathfrak{F} , i.e. sets $P \subseteq \Sigma$ satisfying:

for each $s, t \in \Sigma$, if $s \in P$ and $s \to t$, then $t \in P$.

Translation From Intuitionistic Logic into the S4

The Tarski-Mckinsey translation T can be defined as follows:

$$T(p) = \Box p$$

$$T(\bot) = \bot$$

$$T(\varphi \land \psi) = T(\varphi) \land T(\psi)$$

$$T(\varphi \lor \psi) = T(\varphi) \lor T(\psi)$$

$$T(\varphi \to \psi) = \Box(T(\varphi) \to T(\psi))$$

Theorem

For any set of formulas Γ and formula φ in the propositional language of intuitionistic logic,

$$\Gamma \vdash_{Int} \varphi \iff \{T(\psi) \mid \psi \in \Gamma\} \vdash_{S4} T(\varphi).$$

A General Relational Semantics for Propositional Logic

In fact, the relational semantics of ortho-logic and that of the $\{\neg,\wedge\}$ -fragment of intuitionistic logic can be unified under a general relational semantics for propositional logic.

Proposition

Let $\mathfrak{F}=(\Sigma, \rightarrow)$ be a Kripke frame.

Definition (Proposition)

A proposition on \mathfrak{F} is a set $P \subseteq \Sigma$ such that, for each $s \in \Sigma$, the following are equivalent:

(i) $s \in P$;

(ii) for any $t \in \Sigma$, if $s \to t$, there is a $u \in \Sigma$ satisfying $u \in P$ and $u \to t$.

For each $P \subseteq \Sigma$, the direction from (i) to (ii) always holds, but the conserve may not.

Facts about Propositions

Let $\mathfrak{F}=(\Sigma, \rightarrow)$ be a Kripke frame.

Lemma Image: Σ is a proposition on F. Image: The set of all dead points is a proposition on F.

Lemma

For any propositions P and Q on \mathfrak{F} , $P \cap Q$ is a proposition.

Lemma

For each proposition P on \mathfrak{F} , $\sim P$ is a proposition.

Relational Semantics of Propositional Logic

Let $\mathfrak{F}=(\Sigma, \rightarrow)$ be a Kripke frame.

 $\mathcal{P}_{\mathfrak{F}}:$ the set of propositions on \mathfrak{F}

Definition (Model)

A model on \mathfrak{F} is a tuple $\mathfrak{M} = (\mathfrak{F}, V)$, where $V : PV \to \mathcal{P}_{\mathfrak{F}}$ is a function.

Definition (Truth)

 $\varphi \in Form$ being true at a point $s \in \Sigma$ in a model $\mathfrak{M} = ((\Sigma, \bot), V)$, $\mathfrak{M}, s \Vdash \varphi$, is defined recursively as follows:

$$\begin{split} \mathfrak{M}, s \Vdash p \iff s \in V(p) \\ \mathfrak{M}, s \Vdash \varphi \land \psi \iff \mathfrak{M}, s \Vdash \varphi \text{ and } \mathfrak{M}, s \Vdash \psi \\ \mathfrak{M}, s \Vdash \neg \varphi \iff s \to t \text{ implies that } \mathfrak{M}, t \not\models \varphi, \text{ for all } t \in \Sigma \end{split}$$

Propositional Logic Modal Logic

Special Case 1: Ortho-logic

Let $\mathfrak{F}=(\Sigma, \rightarrow)$ be a Kripke frame satisfying Reflexivity and Symmetry.

Proposition [Chiara and Giuntini, 2002]

For each $P \subseteq \Sigma$, the following is equivalent:

(a) $P \in \mathcal{P}_{\mathfrak{F}}$;

(b) *P* is bi-orthogonally closed, i.e. $P = \sim \sim P$.

$$P \in \mathcal{P}_{\mathfrak{F}}$$

$$\Leftrightarrow \forall s[s \in P \text{ iff } \forall t(s \to t \Rightarrow \exists u(u \in P \text{ and } u \to t))]$$

$$\Leftrightarrow \forall s[s \in P \text{ iff } \forall t(s \to t \Rightarrow \exists u(u \in P \text{ and } t \to u))] \quad (Symmetry)$$

$$\Leftrightarrow \forall s[s \in P \text{ iff } \forall t(\forall u(t \to u \to u \notin P) \Rightarrow s \not\to t)]$$

$$\Leftrightarrow \forall s[s \in P \text{ iff } \forall t(t \in \sim P \Rightarrow s \not\to t)]$$

$$\Leftrightarrow \forall s[s \in P \text{ iff } \forall t(s \to t \Rightarrow t \notin \sim P)]$$

$$\Leftrightarrow \forall s[s \in P \text{ iff } s \in \sim \sim P]$$

$$\Leftrightarrow P = \sim \sim P$$

Special Case 2: Intuitionistic Logic

Let $\mathfrak{F}=(\Sigma, \rightarrow)$ be a Kripke frame satisfying Reflexivity and Transitivity.

Proposition [Chiara and Giuntini, 2002]

For each $P \subseteq \Sigma$, the following is equivalent:

(a) $P \in \mathcal{P}_{\mathfrak{F}}$;

(b) P is persistent/upward closed.

From (b) to (a).

Suppose that (b) holds, i.e. *P* is persistent. Let *s* be arbitrary. It suffices to prove the direction from (ii) to (i). Assume that $\forall t(s \rightarrow t \Rightarrow \exists u(u \in P \text{ and } u \rightarrow t))$. By **Reflexivity** $s \rightarrow s$. Hence there is a *u* such that $u \in P$ and $u \rightarrow s$. Since *P* is persistent, $s \in P$.

Intuitionistic Logic (2)

From (a) to (b).

Assume that (a) holds, i.e. $P \in \mathcal{P}_{\mathfrak{F}}$. Let s, t be arbitrary such that $s \in P$ and $s \to t$. By assumption there is a u such that $u \in P$ and $u \to t$. Let v be arbitrary such that $t \to v$. Since $u \to t$ and $t \to v$, by **Transitivity** $u \to v$. So $u \in P$ is such that $u \to v$. By the arbitrariness of v and the assumption $t \in P$.

Questions

General Question

- Axiomatize the minimal propositional logic with respect to this relational semantics.
- What is the notion of bisimulation for this propositional language in this relational semantics?
- What is the fragment of first-order language corresponding to this propositional language in this relational semantics?

Specific Question about Ortho-logic and Its Extensions

Is there a theory of modal companion for ortho-logic and its extensions?

Outline

1 A Toy Model

2 Algebraic Semantics

- Logics
- Compatibility
- Implication

Relational Semantics Propositional Logic

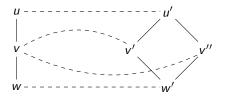
Modal Logic

4 Background

Undefinability

Fact [Zhong, 2018a]

Separation is not modal definable.



- The left one is a bounded morphic image of the right one.
- The left one doesn't satisfy Separation, but the right one does.

Fact Superposition is not modal definable.

Modal Logics

Theorem [Zhong, 2018b]

The modal logic **KTB** is sound and strongly complete with respect to the class of Kripke frames satisfying Reflexivity, Symmetry and Separation.

Theorem [Zhong, 2018b]

The following modal logic:

```
\mathsf{KTB} \oplus (\Box \Box p \to \Box \Box \Box p)
```

is sound and strongly complete with respect to the class of Kripke frames satisfying Reflexivity, Symmetry, Separation and Superposition.

An Important Validity

Proposition

The formula $\Box p \land \neg \Box q \rightarrow \Diamond (\Box p \land \Box \neg (\Box p \land \Box q))$ is valid in the class of all quantum Kripke frames.

Proof.

Let $\mathfrak{M} = (\mathfrak{F}, V)$ be a model where $\mathfrak{F} = (\Sigma, \rightarrow)$ is a quantum Kripke frame. For each $\phi \in Form$, let $\llbracket \phi \rrbracket \stackrel{\text{def}}{=} \{s \in \Sigma \mid \mathfrak{M}, s \Vdash \phi\}$. Then $\llbracket \Box p \rrbracket = \sim (\Sigma \setminus \llbracket p \rrbracket)$ and $\llbracket \Box q \rrbracket = \sim (\Sigma \setminus \llbracket q \rrbracket)$. Hence both of them are bi-orthogonally closed. By orthomodularity $\llbracket \Box p \rrbracket \cap (\sim \llbracket \Box p \rrbracket \sqcup (\llbracket \Box p \rrbracket \cap \llbracket \Box q \rrbracket)) \subseteq \llbracket \Box q \rrbracket$. Hence $\llbracket \Box p \rrbracket \cap \sim (\llbracket \Box p \rrbracket \cap (\sim [\Box p \rrbracket \square \square \square \square q \rrbracket)) \subseteq \llbracket \Box q \rrbracket$. Hence $\llbracket \Box p \rrbracket \cap (\Box (\Box p \land \square \neg (\Box p \land \Box \neg (\Box p \land \Box q))) \subseteq \llbracket \Box q \rrbracket$. Hence $\llbracket \Box p \land \cap (\Box (\Box p \land \Box \neg (\Box p \land \Box \neg (\Box p \land \Box q))) \subseteq \llbracket \Box q \rrbracket$. Hence $\llbracket \Box p \land (\Box \neg (\Box p \land \Box \neg (\Box p \land \Box q))) \rightarrow \Box q \rrbracket = \Sigma$. Hence $\mathfrak{M} \Vdash \Box p \land (\Box \neg (\Box p \land \Box \neg (\Box p \land \Box q))) \rightarrow \Box q$. Therefore, $\mathfrak{M} \Vdash \Box p \land \neg \Box q \to \neg \Box \neg (\Box p \land \Box \neg (\Box p \land \Box q))$.

A Modal Logic Sound w.r.t. Quantum Kripke Frames

Proposition

The following modal logic

 $\mathsf{KTB} \oplus \big\{ \Box \Box p \to \Box \Box \Box p, \ \Box p \land \neg \Box q \to \Diamond (\Box p \land \Box \neg (\Box p \land \Box q)) \big\}$

is sound with respect to the class of all quantum Kripke frames

A Problem

Is there a special kind of Kripke frames which this modal logic axiomatizes?

Outline

1 A Toy Model

2 Algebraic Semantics

- Logics
- Compatibility
- Implication

3 Relational Semantics

- Propositional Logic
- Modal Logic

4 Background

How Is Quantum Theory Built?

- Some data are obtained from experiments about microscopic objects.
- They cannot be explained using classical physics.
- Manipulate some complicated mathematical objects so that the outputs of the calculations fit the data.
- von Neumann proposed the postulates of quantum theory, using Hilbert spaces.

Hilbert Space over $\mathbb C$

Definition (Hilbert Space over \mathbb{C})

A Hilbert space over $\mathbb C$ is

- a vector space over the complex numbers C;
- it is equipped with an inner product;
- it is complete.

Hilbert Space and Quantum Theory

- **(**) A quantum system is described by a Hilbert space \mathcal{H} over \mathbb{C} .
- The states of the system correspond to the one-dimensional subspaces of *H*.
- **③** The properties of the system correspond to the subspaces of \mathcal{H} .

Quantum Logic

Aim: Rational Reconstruction of Quantum Theory

Paradigm:

- Choose and start from physically transparent concepts.
- Find simple and natural axioms to characterize the features of these concepts in quantum theory.
- Use simple mathematical structures to model these concepts.
- Prove representation theorems between these mathematical structures and Hilbert spaces.

Possible Benefits:

- I Highlight the quantum features of some basic physical concepts.
- Understand the physical significance of the complicated structure of a Hilbert space.
- Devise some (automatic) method for reasoning about quantum phenomena.
- Popularize quantum theory in a simple but still rigorous way.

Approaches to Quantum Logic

Property - Algebraic Structure E.g. G. Birkhoff & J. von Neumann, The Logic of Quantum Mechanics, 1936 State - Relational Structure E.g. R. Goldblatt, Semantic Analysis of Orthologic, 1975

Composition of Systems - Category E.g. S. Abramsky & B. Coecke, A Categorical Semantics of Quantum Protocols, 2004

.

The Logic of Quantum Mechanics, 1936

The genesis of quantum logic is marked by the seminal paper

Birkhoff & von Neumann, The Logic of Quantum Mechanics, 1936

Our main conclusion ... is that one can reasonably expect to find a calculus of propositions which is formally indistinguishable from the calculus of linear subspaces with respect to set products, linear sums, and orthogonal complements-and resembles the usual calculus of propositions with respect to and, or, and not. [Birkhoff and von Neumann, 1936]

Hilbert Lattice

Fix a Hilbert space ${\mathcal H}$ over ${\mathbb C}.$

Fact [Birkhoff and von Neumann, 1936], [Husimi, 1937]

The set $\mathcal{L}(\mathcal{H})$ of subspaces of \mathcal{H} forms a *complete orthomodular lattice* $\mathfrak{L}(\mathcal{H})$:

- Partial Order: set-theoretic inclusion ⊆;
- Meet: set-theoretic intersection \cap ;
- Join: closure of the linear sum ⊔;
- **Top**: *H*;
- Bottom: {**0**};
- Orthocomplementation: orthocomplement $(\cdot)^{\perp}$.

Such a lattice is now called a Hilbert Lattice.

Orthomodular Lattice and Hilbert Lattice

Not every orthomodular lattice is a Hilbert lattice.

Theorem [Piron, 1976]

- The lattice of bi-orthogonally closed subspaces of a generalized Hilbert space is always a Piron lattice.
- Every Piron lattice of height at least 4 is isomorphic to the lattice of bi-orthogonally closed subsets of a generalized Hilbert space.

Key Lemma [Amemiya and Araki, 1966]

For every vector space V over \mathbb{C} equipped with an inner product, the following are equivalent:

- (i) it is metrically complete, and thus is a Hilbert space;
- (ii) the bi-orthogonally closed subsets form an orthomodular lattice under \subseteq and $(\cdot)^{\perp}$.

Beyond Piron's Result

- Piron's result shows a correspondence between Piron lattices and generalized Hilbert spaces.
- It's proved that there is a Piron lattice of infinite height that is not isomorphic to any Hilbert lattices. [Keller, 1980]
- Further conditions are required to characterize Hilbert lattices.
- Solèr shows that a generalized Hilbert space having an infinite 'orthonormal' sequence must be a Hilbert space over ℝ, ℂ or ℍ. [Solèr, 1995]
- Holland shows that this condition is equivalent to a lattice-theoretic condition. [Holland, 1995]
- To finally characterize Hilbert lattices, one need to distinguish among $\mathbb{R},\,\mathbb{C}$ and $\mathbb{H}.$

The distinction is first-order in the language of fields, and is equivalent to first-order lattice-theoretic conditions.

Quantum Kripke Frame and Hilbert Space

Theorem [Zhong, 2015]

For each Kripke frame $\mathfrak{F} = (\Sigma, \rightarrow)$, the following are equivalent:

(i) it is a quantum Kripke frame, and there are $\{s_1, s_2, s_3, s_4\} \in \Sigma$ such that $s_i \not\rightarrow s_j$ for any distinct $i, j \in \{1, \dots, 4\}$;

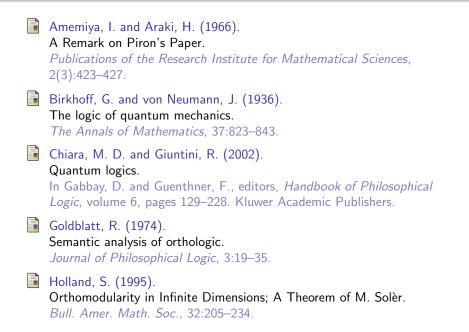
(ii) there are

- **(**) a division ring \mathbb{F} with involution;
- 2 a vector space V over \mathbb{F} of dimension at least 4;
- **③** an orthomodular Hermitian form $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$;
- such that $\mathfrak{F}\cong\mathfrak{F}_V,$ where $\mathfrak{F}_V=(\Sigma(V),\to_V)$ is such that
 - **(**) $\Sigma(V)$ is the set of all one-dimensional subspaces of V;
 - 3 for any $s, t \in \Sigma(V)$, $s \to_V t$, if $\langle \mathbf{u}, \mathbf{v} \rangle \neq 0$ for some $\mathbf{u} \in s$ and $\mathbf{v} \in t$.

Moreover, if they exist, both $\mathbb F$ and V are unique up to isomorphism, and $\langle\cdot,\cdot\rangle$ is unique up to a constant multiple.

Proof.

Use Piron's Theorem and the main result in [Zhong, 2017].



Husimi, K. (1937).

Studies on the foundations of quantum mechanics i.

Proceedings of the Physico-Mathematical Society of Japan, 19:766-789.

Kalmbach, G. (1983). Orthomodular Lattices. Acadamic Press.

Keller, H. (1980). Fin Nicht-Klassischer Hilbertscher Raum. Mathematische Zeitschrift, 172:41–49.

Kotas, J. (1967). An Axiom System for the Modular Logic. Studia Logica, 21(1):17–37.

Mittelstaedt, P. (1978). Quantum Logic.

Piron, C. (1976).

Foundations of Quantum Physics. W.A. Benjamin Inc., Reading.

Solèr, M. (1995).

Characterization of Hilbert Spaces with Orthomodularity Spaces. Communications in Algebra, 23:219 – 243.

Zhong, S. (2015).

Orthogonality and Quantum Geometry: Towards a Relational Reconstruction of Quantum Theory.

PhD thesis, University of Amsterdam. http://www.illc.uva.nl/Research/Publications/Dissertations/DS-2015-03.text.pdf.

Zhong, S. (2017).

A formal state-property duality in quantum logic.

Studies in Logic, 10(2):112–133.

🚺 Zhong, S. (2018a).

Correspondence Between Kripke Frames and Projective Geometries. *Studia Logica*, 106:167–189.

Zhong, S. (2018b).

On the Modal Logic of the Non-orthogonality Relation Between Quantum States.

Journal of Logic, Language and Information, 27:157–173.

Thank you very much!